
Cohomology of the Moduli Space of Stable Bundles

1 Overview

This article is a short review on the basics of Yang–Mills equations over a curve and
the main ingredients of the calculations of Betti numbers of the moduli space of stable
bundles.

2 Basic Setup

Suppose P
π−→ X a principal G−bundle.

Connections on a principal G−bundle can be seen in two ways:

1. Consider the vertical bundle V = kerπ∗ ⊂ TP . Then a connection on P is just a
choice of G−invariant horizontal bundle such that TP = V ⊕H.

2. Consider a G−equivariant g−valued one-form ω which satisfies ω(σ(X)) = X where
σ(X) is the fundamental vector field of X.

We can pass through the first to the second point of view by considering the one-form
which is the projection to V . Conversely, we can consider H = kerω.

Suppose ω, ω′ connection forms, then ω − ω′ vanishes on the vertical bundle, and
right-invariant, it is tensorial. So it descends to a gP−valued one-form on X, where gP is
P ×ad g, the adjoint bundle. So we see that the space of connections form an affine space,
modelled on Ω1(gP ).

We now consider gauge transformations, which are just automorphisms of the principal
bundle. Suppose Φ ∈ AutP . Then since Φ(p) = pf(p), where f : P → G, so

pf(p)g = Φ(p)g

= Φ(pg)

= pgf(pg).

Since G acts freely, we have

f(pg) = g−1f(p)g.

Hence f descends to a section of X to AdP = P ×Ad G. So AutP ∼= ΓAdP .
The curvature of a connection is defined as FA = dωA + 1

2
[ωA, ωA], where ωA is the

connection 1-form of A. We now consider a Lagrangian ‖FA‖2, along with the action
S(A) =

∫
X
‖FA‖2. Since the space of connection is affine, the tangent space is itself, and
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we apply variational techniques to determine the equations of motions, i.e. the Yang–Mills
equations. Consider a family of connections At = A+ tη, then FAt = FA+ tdAη+ 1

2
t2[η, η].

So

S(At) = S(A) + 2t
∫
X
〈dAη, FA〉+ t2

∫
X

(‖dAη‖2 + 〈FA, [η, η]〉) + · · · ,

hence the Yang–Mills equations are d∗AFA = 0, which is just dA ? FA = 0. Along with the
Bianchi identity dAFA = 0, one can see this is a generalisation of the Maxwell’s equations.

3 Narasimhan–Seshadri Theorem

The motivation comes from the Kempf–Ness Theorem, which the simplest form states that
V st/GC = ν−1(0)/G where V is a G−vector space, V st is a choice of stable vectors, GC
the complexification of G and ν the moment map. The more general form relates the GIT
quotient and the symplectic quotient. We expect this behaviour to still be somewhat true
in this infinite dimensional scenario, by considering the space to be space of connection
A and the group to be the gauge group G. So first we have to introduce a symplectic
structure on the space of connections.

Suppose X is a Riemann surface, then the symplectic form on A is given by

ω(α, β) =

∫
X

α ∧ β,

where α, β ∈ Ω1(gP ).
Define ν : A → Ω1(gP ), by A 7→ FA. Then the differential of ν gives (dν)A(a) = dAa.

The vector field associated to φ ∈ Ω0(gP ) is −dAφ. So since

iXφω(b) = −
∫
X

dAφ ∧ b

=

∫
X

φ ∧ dAb

= 〈(dν)A(b), φ〉,

we see that ν serves as a moment map.
Now supposeG = U(n), and thatE is an associated bundle of P , with∇ a U(n)−connection,

then E is a holomorphic vector bundle with ∇0,1 = ∂̄ by Newlander–Nirenberg. Con-
versely suppose ∂̄E = ∂̄ + α in a unitary trivialization, by taking ∇1,0 = ∂ − α†, we have
∇ = ∇1,0 + ∂̄E a unitary connection compatible with the holomorphic structure. So we
see that A ∼= C, where C is the space of holomorphic structures. Since we considered
G = U(n), this isomorphism depends on the hermitian structure of the vector bundle.
To solve this we consider the complexified gauge group GC. As two hermitian structures
are related by a complexified gauge action, the complexified gauge orbits are precisely
the isomorphism classes of holomorphic structure. So we want to find Ast ⊂ A such that
Ast/GC = ν−1(0)/G.

The Narasimhan–Seshadri theorem states that an irreducible holomorphic bundle E
is stable if and only if there exists compatible unitary connection A with constant central
curvature, i.e. ?FA = −2πiµ(E) where µ(E) = deg(E)

rank(E) denotes the slope of the holomorphic
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structure. A holomorphic bundle is defined to be stable if for all subbundles F , we have
µ(F) < µ(E). So we see that this result is similar to Kempf–Ness except that now we
consider projectively flat connections.

4 Equivariant Cohomology

We want to study the group action on a space X, but sometimes the orbit space X/G is
too horrible. We want to study well behaved group actions, so we try to construct a free
action from the original action. Suppose X is a G−space. Then we consider G acting
on the Borel space X × EG diagonally where EG is the universal G−bundle. So G acts
freely on X × EG, and we consider XG = X ×G EG = (X × EG)/G. If G acts freely on
X, then XG → X/G has contractible fibre EG so XG ' X/G. In the general case, the
fibre over x ∈ X is EG/Gx = BGx where Gx is the stabilizer at x. So we see that by
replacing X/G by XG, we are studying a better G−action which is free, and that when
G acts freely on X, they coincide (homotopically). We define the equivariant cohomology
of X to be H∗G(X) = H∗(XG). As H∗G(pt) = H∗(BG), so H∗G is a functor from G−spaces
to H∗(BG) modules.

We want to relate the G−equivariant cohomology and the GC−equivariant cohomology.
For g ∈ GL(n,C), g has a unique decomposition as pu where p is a positive definite
hermitian matrix and u is unitary. So we can scale the eigenvalue of p all to 1 and so
GL(n,C) deformation retracts to U(n). So we see that GC/G is contractible. Assuming
G ⊂ GC is an admissible subgroup, then GC → X ×G EGC → X ×GC EGC forms a fibre
bundle with contractible fibres, so H∗G(X) = H∗GC(X).

To study the topology of the gauge group, we need to identify BG. Take G →
MapG(P,EG) → MapP (X,BG), which is a principal fibration which is locally trivial if
BG paracompact and locally contractible. As MapG(P,EG) contractible, we have BG =
MapP (X,BG), where MapP (X,BG) are the maps from X to BG which pull back EG to
P . Thom’s theorem gives

Map(X,K(A, n)) =
∏
q

K(Hq(X;A), n− q).

The Eilenberg–Maclane spaces satisfy Hn(X;A) = [X,K(A, n)]. Although BU(n) not an
Eilenberg–Maclane space, each Chern class ci is in H2i(BU(n);Z) = [BU(n), K(Z, 2i)],
so we can choose a map c#i : BU(n)→ K(Z, 2i). We take

n∏
i=1

c#i : BU(n)→
n∏
i=1

K(Z, 2i),

which induces isomorphism on rational cohomology groups, so this map is a rational
homotopy equivalence. So we can use Thom’s theorem to calculate the Poincaré of BG.

Now we consider everything over Q. So Map(X,BU(n)) = Map(X,
∏
K(Z, 2i)).
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Hence for X genus g, we have

Map(X,BU(n)) =
n∏
i=1

Map(X,K(Z, 2i))

=
n∏
i=1

K(Z, 2i)×K(Z, 2i− 1)2g ×K(Z, 2i− 2)

= Z×K(Z, 2n)×
n−1∏
i=1

K(Z, 2i)2 ×
n∏
i=1

K(Z, 2i− 1)2g.

We have K(Z, 1) = S1 and K(Z, 2) = CP∞, so by the Leray–Serre spectral sequence, we
have the Poincaré polynomials Pq(K(Z, 2k)) = 1

1−q2k , Pq(K(Z, 2k−1)) = 1+q2k−1. Hence

we see that K(Z, n) path connected for n 6= 0. So since for a fixed P , MapP (X,BU(n) is
just one path connected component of Map(X,BU(n)), MapP (X,BU(n)) is just picking
one entry in Z, which corresponds to the first Chern class. Therefore, we have

Pq(BG) = Pq(MapP (X,BU(n))) =

∏n
k=1(1 + q2k−1)2g

(1− q2n)
∏n−1

k=1(1− q2k)2
.

We will later use this to calculate the Poincaré polynomials of the moduli space of stable
bundles with fixed rank and degree.

5 Topology of the Moduli Space of Stable Bundles

To calculate the betti numbers of the moduli space, we are going to introduce a stratifica-
tion Aµ on the space of connections. The stratification is indexed by a partially ordered
set I. However, for the stratification to be useful in calculations, we need three properties:

1. Aν ⊂ ∪µ≥νAµ,

2. for finite J ⊂ I, there is a finite number of minimal elements in I \ J ,

3. for each q ∈ N there are finite µ ∈ I such that codim(Aµ) < q.

We define the stratification by the Harder–Narasimhan filtration. Any holomorphic bun-
dle E admits a canonical Harder–Narasimhan filtration

0 = F0 ⊂ F1 ⊂ . . .Fr = E ,

withDi = Fi/Fi−1 semistable and that µ(D1) > · · · > µ(Dr). So we define the Harder–
Narasimhan vector µ = (µ1, . . . , µ1, µ2, . . . , µ2, . . . , µr, . . . , µr) where µi = µ(Di) and that
µi appears rankDi times. Since the slopes are decreasing, if we plot out the graph of
straight lines with slope µi’s for rankDi units, we see that the graph is convex. We define
that µ ≥ ν if the graph of µ lies completely above the graph of ν. Then we see that this
stratification satisfies the above three properties.

To get the codimension of Aµ we use Riemann Roch:

h0(V )− h1(V ) = 2c1(V )+rank(V )(2− 2g),
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where h’s denote the real dimension. We take End0E to be the bundle of endomorphisms
which preserve filtration, and that End1E = EndE/End0E . We have H0(End1E) = 0. As
smooth bundles we also see that

End1E ∼=
⊕
j>i

D∗j ⊗Di.

Hence we see that

h1(End1E) = 2
∑
i>j

((nikj − njki) + ninj(g − 1)),

where ni is the rank of Di and ki is the degree. Recall that if we have a first order
deformation of transition functions αij, which is a cocycle φij = αij + βijε. So the cocycle
condition gives βkj = βijα

k
i + αijβ

k
i . So if it is a deformation of the trivial bundle, we

have the cocycle condition βkj = βij + βki , which gives a 1-cocycle with coefficients in the
endomorphism bundle. So the 1-cocycles are in bijection with the first order deformation
of a framed vector bundle, and since it turns out that two deformations are isomorphic iff
the cocycles are cohomologous, H1 of the endomorphism bundle classifies the deformations
of the bundle. Hence h1 is also the codimension of Aµ since H1(EndE) is the deformation
with H1(End0E) along the tangent directions to Aµ and H1(End1E) along the directions
complementary to Aµ.

We now fix a slope vector and take Fµ to be a bundle with fibre GL(n,C)/Bµ where
Bµ is the subgroup such that it preserves a flag which matches the dimensions of the slope
vector. So a section of Fµ is a filtration and take Fµ to be the space of sections which
matches the degree of the filtration. Since the Harder–Narasimhan filtration is canonical,
we have a map F : Aµ → Fµ. F is continuous and extends to Sobolev completions.
Fix Eµ ∈ Fµ, take Bµ = F−1(Eµ), Aut(Eµ) subgroup of GC preserving the filtration, so
Fµ = GC/Aut(Eµ). We also see that Aµ = GC ×Aut(Eµ) Bµ, so

Aµ ×GC EGC = Bµ ×AutEµ EGC = Bµ ×AutEµ EAutEµ.

Now we use Hermitian metric on E to take Fi = D1 ⊕ · · · ⊕ Di and B0
µ ⊂ Bµ such that

Di semistable holomorphic and Aut(E0
µ) automorphisms preserving the splitting. So we

have

Aut(E0
µ) ∼=

∏
Aut(Di)

B0
µ
∼=
∏
Ass(Di),

where Ass is the space of semistable connections. We see that Aut(Eµ) deformation
retracts to Aut(Eµ) and Bµ deformation retracts to B0

µ by scaling the off diagonal entries
and the second fundamental form respectively. So we see that the Borel spaces

(B0
µ)AutE0

µ
= (Bµ)AutEµ = (Aµ)GC .

So over Q, we have

H∗GC(Aµ) ∼=
⊗

H∗Aut(Di)(A
ss(Di)),

by the Künneth formula. The stratification is G−equivariantly perfect, so
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H∗(BG) = H∗(BGC) = H∗GC(A) =
∑
µ

H
∗−dµ
GC (Aµ),

with dµ the codimension. So we obtained the relation

H∗(BG) =
∑
µ

⊗
H
∗−dµ
Aut(Di)(A

ss(Di)).

Suppose gA = A for A a compatible connection on a stable bundle, this gives a
holomorphic automorphisms so if not a constant scalar, this decomposes the bundle into
proper holomorphic eigensubbundles E1 ⊕ · · · ⊕ Ek. As E stable, this is a contradiction
since both E1 and E2 ⊕ · · · ⊕ Ek has both strictly smaller and larger slope than E . So
we see that the stabilizer of a compatible connection on a stable bundle under GC action
consists of constant central scalars. So we see that GC/C∗−equivariant cohomology of the
space of stable connections Ast is the actual cohomology of Ast/GC. We shall see now
how to recover the actual cohomology from the GC−equivariant cohomology. Consider
C∗ → GC → GC/C∗. We fix a frame, and take the determinant of a gauge transformation
to get a map GC → C∗. The map C∗ → GC → C∗ is precisely the map z 7→ zn, so it is
”rationally a splitting”, i.e. over Q, we have GC = GC/C∗ × C∗. So we see that

H∗GC(Ast) = H∗(Ast/GC)⊗H∗(BC∗).

The technical foundations are more or less in place now. We are ready to see how these
results are used in the computation of Poincaré polynomials of the moduli spaces.

6 Examples

Now we compute some examples using the results we outlined above. The computation
of the Poincaré polynomials for the moduli space of stable bundles Mst(n, k) of rank n,
degree k where (n, k) = 1 is an inductive procedure. We will illustrate this by computing
the Poincaré polynomials of Mst(2, 1) and Mst(3, 1).

6.1 Mst(2, 1)

Suppose n = 2, k = 1. Then we have

Pq(BG) =
(1 + q)2g(1 + q3)2g

(1− q2)2(1− q4)
,

and that we have the possible slope vectors are (1
2
, 1
2
) and (l + 1,−l) where l ≥ 0. The

first case corresponds to the stable case, and the second case corresponds to the Harder–
Narasimhan filtration 0 ⊂ F ⊂ E . Since any holomorphic line bundle is stable, we have

H∗GC(Al) = H∗Aut(F)(Ast(F))⊗H∗Aut(E/F)(Ast(E/F))

= H∗(BAut(F))⊗H∗(BAut(E/F)).

So we see that

PGC(Al) =

(
(1 + q)2g

1− q2

)2
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and the formula for the codimension gives

dµ = 4l + 2g,

so we have

Pq(BG) =
(1 + q)2g(1 + q3)2g

(1− q2)2(1− q4)

= PGC(Ast) +
∞∑
l=0

q4l+2g

(
(1 + q)2g

1− q2

)2

= PGC(Ast) +

(
q2g

1− q4

)(
(1 + q)2g

1− q2

)2

,

Hence we obtain

PGC(Ast) = (1 + q)2g
(1 + q3)2g − q2g(1 + q)2g

(1− q2)2(1− q4)
.

Since we know that H∗GC(Ast) = H∗(Ast/GC)⊗H∗(BC∗), there is an additional 1
1−q2 factor,

hence

Pq(Mst(2, 1)) = (1 + q)2g
(1 + q3)2g − q2g(1 + q)2g

(1− q2)(1− q4)
.

6.2 Mst(3, 1)

Suppose n = 3, k = 1. Then we have

Pq(BG) =
(1 + q)2g(1 + q3)2g(1 + q5)2g

(1− q2)2(1− q4)2(1− q6)
,

and that we have the possible slope vectors (1
3
, 1
3
, 1
3
), (s + 1,− s

2
,− s

2
), ( r+1

2
, r+1

2
,−r) and

(r+ s+ 1,−r,−s). So we see that to do the calculation we have to calculate the Poincaré
polynomial for Ass when n = 2 and k arbitrary, the only thing we lost when k is even is
that semistable does not imply stable but the calculation is the same, since we only use
strictly stable to calculate the actually homology of the moduli space but since we work
in the equivariant setting everything proceeds the same. So we have

PGC(Ass) =
(1 + q)2g(1 + q3)2g

(1− q2)2(1− q4)
−

(
q2g+2k+b− k

2
c−1

1− q4

)(
(1 + q)2g

1− q2

)2

= (1 + q)2g
(1 + q3)2g − q2g+2k+b− k

2
c−1(1 + q)2g

(1− q2)2(1− q4)
.
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So as before we have

Pq(BG) =
(1 + q)2g(1 + q3)2g(1 + q5)2g

(1− q2)2(1− q4)2(1− q6)

= PGC(Ast) +
∞∑
s=0

q6s+4g

(
(1 + q)2g

1− q2

)
(1 + q)2g

(1 + q3)2g − q2g−2s+b s2 c−1(1 + q)2g

(1− q2)2(1− q4)

+
∞∑
r=0

q6r+4g−2
(

(1 + q)2g

1− q2

)
(1 + q)2g

(1 + q3)2g − q2g+2r+b− r+1
2
c+1(1 + q)2g

(1− q2)2(1− q4)

+
∞∑
s=0

s∑
r=b− s+1

2
c+1

q8r+8s+6g−2
(

(1 + q)2g

1− q2

)3

,

and from this we can calculate the Poincaré polynomial of Mst(3, 1) by multiplying a
factor of 1− q2.
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